Whitehead groups of exchange rings with primitive factors artinian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whitehead Groups of Exchange Rings with Primitive Factors Artinian

We show that if R is an exchange ring with primitive factors artinian then K1(R) U(R)/V(R), where U(R) is the group of units of R and V(R) is the subgroup generated by {(1+ab)(1+ba)−1 | a,b ∈ R with 1+ab ∈ U(R)}. As a corollary, K1(R) is the abelianized group of units of R if 1/2∈ R. 2000 Mathematics Subject Classification. 16E50, 19B10. Very recently, Ara et al. [2] showed that the natural hom...

متن کامل

Artinian Band Sums of Rings

Band sums of associative rings were introduced by Weissglass in 1973. The main theorem claims that the support of every Artinian band sum of rings is finite. This result is analogous to the well-known theorem on Artinian semigroup rings. 1991 Mathematics subject classification (Amer. Math. Soc): primary 16P20, 16W50; secondary 20M25. Let B be a band, that is, a semigroup consisting of idempoten...

متن کامل

Whitehead Groups of Finite Groups

In 1966, Milnor surveyed in this Bulletin [23] the concept of Whitehead torsion, focusing on the definition, topological significance and computation of Whitehead groups and their relationship to algebraic ^-theory and the congruence subgroup problem. As Milnor showed in that survey [23, Appendix 1], an affirmative solution to the congruence subgroup problem for algebraic number fields would im...

متن کامل

Left localizations of left Artinian rings

For an arbitrary left Artinian ring R, explicit descriptions are given of all the left denominator sets S of R and left localizations SR of R. It is proved that, up to R-isomorphism, there are only finitely many left localizations and each of them is an idempotent localization, i.e. SR ≃ S e R and ass(S) = ass(Se) where Se = {1, e} is a left denominator set of R and e is an idempotent. Moreover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2001

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171201005464